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Abstract

This article presents a short overview of current parallelization concepts,
focusing on vectorization, OpenMP and MPI, to obtain parallelization at
the stream, thread and process levels. Vectorization allows compilers and
interpreters to generate parallel code to perform the same operation over
all the different elements of data arrays, and significantly improves code
robustness and organization. OpenMP and MPI are the most commonly used
cross-platform solutions to obtain thread and process parallelism. Keywords:
Parallelization, vectorization, OpenMP, MPI.

1. Introduction

In recent years, the increase in computing power has been shifting from mak-
ing faster processors to increasing the number of available processing cores, due
to thermal and electrical constraints limiting processors’ operating frequencies.
Therefore, it has become necessary to make parallel code. However, paralleliza-
tion with N units does not simply speedup a program by N times. There is an
overhead, from the computation associated with managing the different process-
ing elements. Also, a code that is only partly parallel (as is typical) has its perfor-
mance gain limited by the serial (non-parallel) part. As the number of processing
units increases, the parallelized portion of the code may take progressively less
time, while the serial portion does not. The simplest model to express this rela-
tion is Amdahl’s law [1], which is valid when the parallel part scales linearly with
the number of processing units, and the parallelization overhead is negligible. The
speedup S for a code with a parallel fraction P running on N units is an asymptotic
function (S = (1 —P+P/N) 1.

The most basic two ways in which parallelization can be achieved are
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e Data parallelism - The data to be processed is divided among the processing
units. The processing may or may not be identical over all data values. This
can be achieved by either a parallel program, or by calling multiple instances
of a serial program (extrinsic parallelism).

e Task parallelism - There are multiple independent tasks to perform, which
can then be run simultaneously, each on a different processing unit.

Another commonly used classification is Flynn’s taxonomy [7]:
1. SISD - Single Instruction stream, Single Data stream - No parallelization.

2. SIMD - Single Instruction stream, Multiple Data stream - Data parallelism:
Same operation performed by different processing units on different data.

3. MIMD - Multiple Instruction stream, Multiple Data stream - Task paral-
lelism and some forms of data parallelism, where different processing units
perform (possibly) different operations on different data elements.

4. MISD - Multiple Instruction stream, Single Data stream - For redundancy.

In task parallelism, the maximum number of simultaneous tasks is determined
by the problem’s algorithm, and is usually only a few, while in data parallelism
the number of simultaneous tasks is determined by the amount of data to process,
typically making it possible to use whatever number of processing units available.

Some of the most commonly used current parallelization paradigms are:

e Shared memory - each processing unit is a thread, and some of the program
variables are shared among the threads:

Vectorization (language-dependent).

OpenMP (cross-platform).

Graphical Processing Unit (GPU) computing (varied options).

Manual thread management (highly language- and system- dependent).

e Distributed memory - each processing unit is a process, and all of a pro-
cess’ variables are private to it. Processes only communicate through mes-
sages or some shared resource (such as files):

— MPI (cross-platform).



— Manual process management (language- and system- dependent).

— Grid / cloud computing (varied options).

Ahead, three of these paradigms will be discussed: vectorization, OpenMP
and MPI (figure 1). All the code examples cited here can be found at http:
/ /www . ppenteado.net /papers/iwcca/, with .f90, .c, .cpp and .txt files
for Fortran, C and C++ source code, and program use and outputs.
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Figure 1: Comparison of three parallelization paradigms. Top: With respect to
the number of different simultaneous operations and the need for shared memory.
Bottom: With respect to the abstraction level, which determines how much code
the programmer has to write to achieve parallelization.

2. Vectorization

Vectorization means simply to express operations on whole arrays (or array
slices), instead of looping over elements. It is a concept independent of paral-
lelization, and it is important in making code easier to write, read and maintain,
as well as more efficient - even if it is going to be executed serially. Because array
operations are intrinsically SIMD, they are natural candidates for parallelization.
Since array semantics already expresses what is to be done with the different array
elements, it naturally provides the compiler or interpreter all the necessary infor-
mation to parallelize the task. Parallelization through vectorization is implicit:
the programmer only specifies the array operations to be done, and it is up to the
compiler or interpreter to produce the parallel code. Code execution can be much
more efficient (up to several orders of magnitude) with array operations instead of
loops, even without parallelization [4, 5]. Vectorization is not standardized over
different languages. Languages vary widely both in the range of features offered
and the semantics and syntax by which they are implemented:
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1. C, Fortran 77, Perl - no vectorization.

2. Fortran 90/95/2003/2008, C++, Java - simple vectorization: cumbersome
for arrays over 1D (particularly over 2D); limited to operations over whole
arrays or rectangular slices; improvement in Fortran from 90 to 2008.

3. C++ Boost.MultiArray (non-standard) library - improves on the functional-
ity of the (standard) vector, with more advanced operations for over 1D.

4. R - better support for non-trivial manipulations, especially up to 2D (matrix
class). As a dynamic language (interpreted at runtime), it offers more scope
for more general array operations than the languages above (all static).

5. IDL, Python with the (non-standard) NumPy library - Far more extensive
vectorization capabilities, particularly for over 2D. Most support for com-
plex slicing, element searches, inversion of indexes, non-rectangular slices
(Numpy), mixed dimension operations, redimensioning, 1D indexing in
multidimensional arrays, empty arrays, and extensive language and library
support to apply functions vectorially, including the ability to write code
that works unaltered with arbitrary numbers of dimensions.

Since computer memory is always 1D, all arrays with dimensionality greater
than or equal to 2 are stored as a sequence of 1D slices. As such, there are two
most obvious choices: to store contiguously either the leftmost or the rightmost
dimension. That is: when storing the elements of a 2D array, will the first elements
be the first line or the first row of the array? Different languages make different
choices:

e Column-major storage - Fortran, R, Numpy and Boost.MultiArray; the left-
most dimension is contiguous.

e Row-major storage - C, C++, Java, Numpy and Boost.MultiArray; the right-
most dimension is contiguous.

The most common situations when this choice matters are: moving data be-
tween different languages; reading or writing many elements (more efficient, up to
by orders of magnitude, if traveling in the same order as the elements are stored);
semantics of vector operations (to work with contiguous blocks of elements, to
write literals, to read and write data, and to do concatenations).

With this large variation in the scope, semantics and syntax over different
languages, a detailed discussion and comparison of them with code examples is
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beyond the scope of this article. The reader is referred to the documentation and
books on each language for more information [10, 13, 11, 12, 8, 6, 16].

Computationally heavy scientific codes almost always often have to apply the
same independent operation to large numbers of array elements: elements in lin-
ear algebra matrices, pixels in images, spectra and data cubes, voxels (volume
elements) and particles in simulations, points in time series and other functions,
etc. Therefore, vectorization is of general use in scientific computing, either as the
only form of parallelization, or inside code used in other forms of parallelization.
Vectorization also allows for better compiler optimizations of memory access and
use of vector instructions (such as SSE and AVX) to do SIMD on single processor
cores.

3. OpenMP

OpenMP (Open Multi-Processing) is a cross-platform standard released in
1997, to replace a multitude of incompatible vendor-specific solutions for thread
parallelism. It has been implemented in Fortran, C and C++ compilers of most
widely used platforms, and is at version 3.0 (2008), with 3.1 being discussed. In
OpenMP each code unit being executed simultaneously is a thread, with all of
them having access to the same memory. All OpenMP constructs are compiler
directives, which are interpreted as comments by compilers unaware of OpenMP.
This facilitates writing code that can be compiled, unchanged, with and without
OpenMP. Besides these constructs, OpenMP offers a few utility functions, typi-
cally used to query about the execution environment.

The structure of a typical OpenMP program starts with execution of a single
thread (the master thread), which after any setup and non-parallelized work cre-
ates a team of other threads. At that point, execution proceeds in parallel over
the threads, until the end of all the parallel regions, where the other threads are
finished, with execution proceeding only at the master thread. There can be an
arbitrary succession of such parallel regions enclosed by serial regions, and each
parallel region can in principle have an arbitrary number of execution threads.
The number of execution threads created is typically created based on external
information (the environment variable $OMP_NUM_THREADS). Some implementa-
tions may also allow nested parallelism: parallel regions can have their own forks,
creating their own sets of threads.

OpenMP’s functionality is provided by a set of constructs, with optional clauses,
and a set of utility library functions. More details are discussed by [2, 14, 3, 9],



and at http://openmp.organd http://compunity.org.

o Control constructs:

— parallel - The main OpenMP construct, it defines the extent of the
regions to be executed in parallel. If used without other constructs, it
is left to the programmer to make different threads do different work
(examples pp_omp_ex2 and pp_omp_ex3).

— Conditionals - Lines of code are only compiled by a compiler with
OpenMP enabled. Used in calls to OpenMP’s functions, so that they
are skipped when not using OpenMP (example pp_omp_ex3). In C/C++:

#pragma omp parallel
{printf ("This is thread %i\n",omp _get thread num());}

— 1f - A form of conditional use of parallelization, evaluated at runtime.
Commonly used to ensure that work is only separated in threads if the
gains would compensate the overhead of parallelization.

e Worksharing constructs: - specify several ways in which OpenMP can
separate the work among threads. loop and workshare are intended for
data parallelism, while section and task are intended for task parallelism.

— loop - Called for in C and C++, and do in Fortran. Each thread does
a subset of the loop iterations (example pp_omp_ex4). In C/C++:

#fpragma omp parallel for shared(a,n)
for (int 1=0; i<n; i++) al[il=2*1i;

— section, task - Used to specify regions of code that will be executed
by different threads, in task parallelism (example pp_omp_ex5).

— workshare - Vectorization: vector operations (Fortran only) in a workshare
region are executed in parallel by the threads (example pp_omp_ex6.£90):

!Somp parallel shared(b,n) private(j)
!'Somp workshare

forall (j=1:n) b(j)=2*7

!Somp end workshare

!Somp end parallel

— single - Code in a parallel region to be executed by only one thread.
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e Synchronization constructs - change how threads execute depending on
the state of the other threads, avoiding synchronization problems (such as
reading values from a variable before all threads have finished updating it):

— barrier - When threads encounter a barrier, they must wait until all
threads have encountered that barrier before they can proceed.

— ordered, master - Specify that a region of code is to be executed in
order among threads or by just the master thread.

— critical, atomic, reduction - Different specializations for code
that must use a shared resource (shared variables, input/output streams)
with restrictions to simultaneous use.

— locks - Control access to shared resources: only one thread at a time
can hold a lock.

e Main Clauses - modify the behavior of constructs:

— shared - The same variable is common to all threads.

— private, lastprivate, firstprivate - Each thread has its own in-
stance of the variable. Block variables (C, C++) are always private.

— schedule - Specifies the algorithm to assign iterations among threads
in a loop construct. For cases when some iterations may take longer
than others, to balance the load among threads.

e Library functions - To communicate, get and set execution environment
parameters, synchronize and share resources. Function calls are typically
placed under conditional compilation, so that they are ignored when the
program is not compiled for OpenMP (example pp_omp_ex3).

Since scientific computing nearly always makes use of applying the same pro-
cessing to many data elements, OpenMP most often is used to easily obtain data
parallelism. Therefore, it is often applied to the same problems cited in the previ-
ous section as examples of vectorization uses, including those cases where the pro-
cessing cannot be conveniently expressed in terms or array operations. Through
OpenMP, these applications can make use of the multiple processors with shared
memory present in most current computers, without all the difficulties of the ex-
plicit inter-process communication required by MPI.

4. MP1



To fulfill the need for a cross-platform standard for process parallelism, MPI
(Message Passing Interface) was released in 1994. It is currently at version 2.2
(2009), with 3.0 under discussion. MPI is most often implemented for C, C++ and
Fortran, though it has been implemented in other platforms (Java, Python, IDL).
MPI consists solely of a library of functions. All parallelization in the code is
explicit, achieved through calls to MPI’s functions, which pass messages to and
from the MPI environment. The MPI environment is set up by the MPI process
managers (mpirun, mpiexec), which start the program and handle creation and
destruction of processes. As such, MPI is a relatively simple (low-level) standard,
at the price of added complexity when writing the code, since the interaction be-
tween processes must be written explicitly by the programmer (figure 1). Though
through conditional compilation it is possible to write an MPI program that also
runs serially without MPI, this is usually cumbersome.

Typically, an MPI program begins with the function calls to do the MPI ini-
tialization, and ends with the MPI clean-up. In between, the code usually will
be common to all processes (SPMD - Single Process/Program, Multiple Data), so
that each process must make use of the MPI functions to decide what part of the
job it must do. There is no shared memory among the processes, so all communi-
cation normally happens by sending and receiving MPI messages. This paradigm
can be applied to both data and task parallelism.

The processes send and receive data through the domains of MPI communi-
cators. The processes may be executed in the same processor core, by multiple
cores in the same computer, or multiple computers over a network, but MPI al-
ways presents the same Application Programming Interface (API). MPI offers a
variety of communication options:

e Blocking operations: When a process encounters a blocking operation, it
must wait until it is finished before it can proceed. With non-blocking oper-
ations, the process may continue before the operation is finished.

e Synchronous operations: When a process sends data through a synchronous
operation, it must wait until the target process(es) start receiving the data
(analogous to a phone call). With asynchronous communications, the pro-
cess is free to proceed with other tasks while the data is being delivered
(analogous to an e-mail).

Some of the main MPI functions in the standard APIs (C, C++ and Fortran)
are listed below. More details are given by [15, 14, 3, 9] and at http://www.
mpi-forum.org.
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e Execution control and environment information

— MPI_Init, MPI_Finalize - Used by only one process to set up the
MPI environment and to clean it up at the end.

— MPI_Abort - Used to request a termination of all processes.

— MPI_Barrier - When a process encounters a barrier, it waits until all
processes reach the barrier, before proceeding.

— MPI_Test, MPI_Wait - Verifies if / waits until a transfer completes.

— MPI_comm size, MPI_Comm rank, MPI_Get_ processor_name - Ob-
tain the number of processes, the process rank and the name of the
processor running a process.

e Data transfer

— MPI_Send, MPI_Recv, MPI_Sendrecv- Send or/and receive a message
(data), to a specific process, in a blocking operation.

— MPI_TIsend, MPI_Trecv - Send or receive a message to another pro-
cess, in a non-blocking operation.

— MPI_Bcast - Send the same message to all processes.

— MPI_Reduce - Combines a data element from each process into a sin-
gle value, through a series of binary operations (such as addition, or
picking the maximum value).

— MPI_Gather, Scatter - Retrieve / send a data element from / to each
process into / from a set of values.

These functions are considerably simplified in the object-oriented API offered
by the Boost.MPI library. In particular, this library can use the Boost serialization
library and the C++ standard containers to make transfer of arrays and structures
considerably simpler than with the standard API. This difference, as well as the
general structure of a simple program and uses of some of the functions above,
can be seen in the example files (pp_mpi_ex1, pp_mpi_ex2).

MPI is most often used when one needs to make use of distributed memory
systems (computer clusters). Since the message passing is usually much slower
than memory access, MPI is most efficient when the computation done by each
process is largely independent from that done by the others. This is often the
case with data parallel problems such as repeating processing for large numbers



of experiments (different observations, models, images, etc), simulations where
each particle / model region has computations independent of the others (inside the
time steps in dynamical fluid or particle models, different wavelengths in radiation
models, etc.). Another important class of problems well-suited for MPI is task
parallelism, where there are different independent tasks that do not need much
communication between them (generating visualizations and writing files of one
data set while processing the next data set, for instance).

5. Comparison and discussion

There is no single approach that will be the best for all problems, and most
problems are best served by hybrid solutions, making use of different forms of
parallelization for different parts of the work. Therefore, knowing the characteris-
tics of the different options is paramount to making the best choices [15, 14, 3, 9].
Comparatively, these three paradigms can be summarized as:

1. Vectorization

Implicit: the compiler / interpreter does the parallelization,

Limited to shared memory, in the simplest cases of data parallelism.

Languages vary widely in capabilities, semantics and syntax.

Can make use of SIMD in single processor cores.

Makes code more robust, readable and maintainable.
2. OpenMP

e Language-, compiler- and platform-independent well-established stan-
dard for shared memory data and task parallelism.
e Easy to keep compatibility with serial code.

e Usually only implemented for C, C++ and Fortran.
3. MPI

e Most widely used standard for distributed memory parallelization.
e Multiple processes, in a single computer or in several computers.

e Usually requires to structure the whole program for MPI.
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e Without the (non-standard) Boost.MPI library, cuambersome to transfer
data more complex than arrays of primitive data types.

e Not completely standardized.

Parallelization is not always done directly when developing the application: it
may be the result of simply using libraries that make use of parallelization. This
is often the case with tasks that are common to many scientific and computing
areas, such as linear algebra, Fourier transforms, image processing operations,
common algorithms (sorting, containers, etc.), and common scientific problems
(CFD, MHD, N-bodies, nearest neighbors, etc.).

In summary: in scientific computing usually there is large scope for vector-
ization, and it should be applied in everywhere possible, even when paralleliza-
tion is not relevant, as it makes the code considerably more robust, maintainable,
verifiable and optimizable. The next step is identifying where the problem can
be parallelized beyond vectorization, either by data or task parallelism. These
operations can run with the fast and simple shared memory parallelization of-
fered by OpenMP. If further parallelization is desired, to run the code in multiple
computing nodes, the code can be structured to run several processes, with com-
munication done by MPI. In this nested approach, MPI is used to run processes
in different computing nodes, with each process using OpenMP to run several
threads in different cores, and vectorization to organize the code and allow further
optimizations, including SIMD in each processor core.

ACKNOWLEDGMENTS: This work was supported by a FAPESP grant
(2007/57447-6) and the organizers of the I Workshop de Computacao Cientifica
em Astronomia, held at Unicsul in June 2011.

References

[1] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967,
spring joint computer conference, AFIPS *67 (Spring), pages 483—485, New
York, NY, USA, 1967. ACM.

[2] B. Chapman, G. Jost, and R. Pas van der. Using OpenMP: Portable Shared
Memory Parallel Programming. MIT Press, 2007.

11



[3] R. Cook. An Introduction to Parallel Programming with OpenMP, PThreads
and MPI. Cook’s Books, 2011.

[4] N. G. Dickson, K. Karimi, and F. Hamze. Importance of explicit vector-
ization for CPU and GPU software performance. Journal of Computational
Physics, 230:5383-5398, June 2011.

[5] D.F. Fanning. My IDL Program Speed Improved by a Factor of 8100!!!
http://www.idlcoyote.com/code_tips/slowloops.html, July 2003.

[6] D.F. Fanning. The IDL Way. http://www.idlcoyote.com/idl_way/
idl_way.php, September 2011.

[7] Michael J. Flynn. Some computer organizations and their effectiveness.
Computers, IEEE Transactions on, C-21(9):948 —960, September 1972.

[8] M. Galloy. Modern IDL. http://modernidl.idldev.com/, 2011.

[9] G. Hager and G. Wellein. Introduction to High Performance Computing for
Scientists and Engineers. CRC Press, 2010.

[10] Hans Petter Langtangen. Python Scripting for Computational Science.
Springer Publishing Company, Incorporated, 2009.

[11] Community NumPy. NumPy Reference Guide. http://docs.scipy.org/
doc/, August 2011.

[12] Community NumPy. NumPy User Guide. http://docs.scipy.org/doc/,
August 2011.

[13] T.E. Oliphant. A Guide to Numpy. Trelgol, http://www.tramy.us/, De-
cember 2006.

[14] P. Pacheco. An Introduction to Parallel Programming. Morgan Kaufmann,
2011.

[15] T. Rauber and G. Riinger. Parallel Programming: for Multicore and Cluster
Systems. Springer, 2010.

[16] J.D. Smith and D.F. Fanning. HISTOGRAM: The Breathless Horror
and Disgust. http://www.idlcoyote.com/tips/histogram tutorial.
html, March 2011.

12


http://www.idlcoyote.com/code_tips/slowloops.html
http://www.idlcoyote.com/idl_way/idl_way.php
http://www.idlcoyote.com/idl_way/idl_way.php
http://modernidl.idldev.com/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://www.tramy.us/
http://www.idlcoyote.com/tips/histogram_tutorial.html
http://www.idlcoyote.com/tips/histogram_tutorial.html

