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Abstract

This article presents a short overview of current parallelization concepts,
focusing on vectorization, OpenMP and MPI, to obtain parallelization at the
stream, thread and process levels. Vectorization allows compilers and in-
terpreters to generate parallel code to perform the same operation over all
the different elements of data arrays, and significantly improves in code
robustness and organization. OpenMP is the most commonly used cross-
platform solution to obtain thread parallelism. MPI is the most commonly
used cross-platform solution to obtain process parallelism. The article ends
with a discussion on the applications of each method. Keywords: Paralleliza-
tion, vectorization, OpenMP, MPI.

1. Introduction

In recent years, the increase in computing power has been shifting from mak-
ing faster processors to increasing the number of available processing cores. There-
fore, to take advantage of greater processing power it is no longer sufficient to just
buy faster computers to run code that only does one operation at a time; it has
become necessary to make parallel code. However, parallelization with N units
does not simply speedup a program by N times. There is an overhead, from the
computation associated with managing the different processing elements. Also,
a code that is only partly parallel (as is typical) has its performance gain limited
by the serial (non-parallel) part. As the number of processing units increases, the
parallelized portion of the code may take progressively less time, while the se-
rial portion does not. Thus the serial part may quickly become the dominant in
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the computation time. The simplest model to express this relation is Amdahl’s
law [1], which is valid when the parallel part scales linearly with the number of
processing units, and the parallelization overhead is negligible. The speedup S
for a code with a parallel fraction P running o N units is an asymptotic function
(S = (1−P+P/N)−1).

The most basic two ways in which parallelization can be achieved are

• Data parallelism - The data to be processed is divided among the process-
ing units. The processing can either be identical over all data values, or be
allowed to vary depending on the data. This can be achieved by either a par-
allel program, or by calling multiple instances of a serial program (extrinsic
parallelism).

• Task parallelism - There are multiple independent tasks to perform, which
can then be run simultaneously, each on a different processing unit.

Another commonly used classification is Flynn’s taxonomy [7]:

1. SISD - Single Instruction stream, Single Data stream - No parallelization
(serial program).

2. SIMD - Single Instruction stream, Multiple Data stream - A form of data
parallelism, where the same operation is performed by different processing
units on different data elements.

3. MIMD - Multiple Instruction stream, Multiple Data stream - Task paral-
lelism and some forms of data parallelism, where different processing units
run (possibly) different code on different data elements.

4. MISD - Multiple Instruction stream, Single Data stream - Typically used in
redundant systems.

In task parallelism, the maximum number of simultaneous tasks is determined
by the problem’s algorithm, and is usually only a few, while in data parallelism
the number of simultaneous tasks is determined by the amount of data to process,
typically making it possible to use whatever number of processing units available.
This means that a program that uses only task parallelism will usually be more
limited in the gain it can obtain from large numbers of computing cores.

Some of the most commonly used current parallelization paradigms are:

• Shared memory - each processing unit is a thread, and some of the program
variables are shared among the threads.
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– Vectorization (language-dependent).

– OpenMP (cross-platform).

– Graphical Processing Unit (GPU) computing (varied options).

– Manual thread management (highly language- and system- dependent).

• Distributed memory - each processing unit is a process, and all of a process’
variables are private to it. Processes only communicate through messages
or some shared resource (such as files).

– MPI (cross-platform).

– Manual process management (language- and system- dependent).

– Grid / cloud computing (varied options).

Ahead, three of these paradigms will be discussed. All the code examples
cited here can be found at http://www.ppenteado.net/papers/iwcca/, with
.f90, .c and .cpp files for Fortran, C and C++ source code, and program use and
outputs in the corresponding .txt files.

2. Vectorization

Vectorization means simply to express operation on arrays, of whatever num-
ber of dimensions, as array operations, instead of looping over elements. It is a
concept independent of parallelization, and it is useful in making code easier to
write, read and maintain, as well as more efficient, even if it is going to be exe-
cuted serially. Because array operations are intrinsically SIMD, they are natural
candidates for parallelization. Since array semantics already expresses what is
to be done with the different array elements, it naturally provides the compiler
or interpreter all the necessary information to parallelize the task. Parallelization
through vectorization is implicit: the programmer only specifies the array opera-
tions to be done, and it is up to the compiler or interpreter to produce the parallel
code. Vectorization is of particular relevance to scientific computing, where often
substantial parts of the computation time are spent in operations on arrays. With-
out vectorization, these operations have to be done with loops over the elements,
which are significantly worse for the readability and robustness of the code, since
it is more verbose, and requiring manual bookkeeping with indexes and dimen-
sions. Code execution can be much more efficient (up to several orders of mag-
nitude) with array operations instead of loops, even without parallelization [4, 5].
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Vectorization is not standardized over different languages. They vary widely both
in the range of features offered and the semantics and syntax by which they are
implemented:

1. C, Fortran 77, Perl - mo vectorization.

2. Fortran 90/95/2003/2008, C++, Java - simple vectorization: cumbersome
for arrays over 1D (particularly over 2D); limited to operations over whole
arrays or rectangular slices; improvement in Fortran from 90 to 2008.

3. C++ Boost.MultiArray (non-standard) library - improves on the functional-
ity of the (standard) vector, with more advanced operations for over 1D.

4. R - better support for non-trivial manipulations, especially up to 2D (matrix
class). As a dynamic language (interpreted at runtime), it offers more scope
for more general array operations than the languages above (all static).

5. IDL, Python with the (non-standard) NumPy library - Also dynamic lan-
guages, with far more extensive vectorization capabilities, particularly for
over 2D. Most support for complex slicing, element searches, inversion of
indexes (histogram operations), non-rectangular slices (Numpy), fancy in-
dexing, mixed dimension operations, redimensioning, 1D indexing in mul-
tidimensional arrays, empty arrays, and extensive language and library sup-
port to apply functions vectorially, including the ability to write code that
works unaltered with arbitrary numbers of dimensions.

One important point to note when using multidimensional arrays is how they
are stored internally: computer memory is always 1D, so all arrays over 1D are
stored as a sequence of 1D slices. As such, there are two most obvious choices: to
store contiguously either the leftmost or the rightmost dimension. That is: when
storing the elements of a 2D array, will the first elements be the first line or the
first row of the array? Different languages make different choices:

• Column-major storage - Fortran, R, Numpy and Boost.MultiArray; the left-
most dimension is contiguous.

• Row-major storage - C, C++ and Java, Numpy and Boost.MultiArray; the
rightmost dimension is contiguous.

The most common situations when this choice matters are: moving data be-
tween different languages; reading or writing many many elements (more effi-
cient, up to by orders of magnitude, if traveling in the same order as the elements
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are stored); semantics of vector operations (to work with contiguous blocks of
elements, to write literals, to read and write data, and to do concatenations).

With this large variation in the scope, semantics and syntax over different
languages, a detailed discussion and comparison of them is beyond the scope
of this article. The reader is referred to the documentation and books on each
language for more information [10, 13, 11, 12, 8, 6, 16].

3. OpenMP

OpenMP (Open Multi-Processing) is a cross-platform standard released in
1997, to replace a multitude of incompatible vendor-specific solutions for thread
parallelism. It has been implemented in Fortran, C and C++ compilers of most
widely used platforms, and is at version 3.0 (2008), with 3.1 being discussed.
Each code unit being executed simultaneously is a thread, with all of them hav-
ing access to the same memory. All OpenMP constructs are compiler directives,
which are interpreted as comments by compilers unaware of OpenMP. This facil-
itates writing code that can be compiled, unchanged, with and without OpenMP.
Besides these constructs, OpenMP offers a few utility functions, typically used to
query about the execution environment.

The structure of a typical OpenMP program starts with execution of a single
thread (the master thread), which after any setup and non-parallelized work cre-
ates a team of other threads. At that point, execution proceeds in parallel over
the threads, until the end of all the parallel regions, where the other threads are
finished, with execution proceeding only at the master thread. There can be an
arbitrary succession of such parallel regions enclosed by serial regions, and each
parallel region can in principle have an arbitrary number of execution threads.
The number of execution threads created is typically created based on external
information (the environment variable $OMP_NUM_THREADS). Some implementa-
tions may also allow nested parallelism: parallel regions can have their own forks,
creating their own sets of threads.

OpenMP’s functionality is provided by a set of constructs, with optional clauses,
and a set of utility library functions. More details are discussed by [2, 14, 3, 9],
and at http://openmp.org and http://compunity.org.

• Constructs

– Control constructs
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∗ parallel - The main OpenMP construct, it defines the extent of
the regions to be executed in parallel. A simple parallel only
specifies that the enclosed code lines are to be run, identically, by
all threads. It is up to the programmer to make the threads do
different work (examples pp_omp_ex2 and pp_omp_ex3).

∗ Conditional execution - Allow to only compile the corresponding
lines of code if an OpenMP-aware compiler is used with OpenMP
enabled. Often used in calls to OpenMP’s functions, so that they
are skipped when not using OpenMP (example pp_omp_ex3).

∗ if - A form of conditional use of parallelization: If the condition
evaluates to true at runtime, the code is run in multiple threads.
Otherwise, the code runs serially (in a single thread). Commonly
used to ensure that work is only separated in threads if the gains
would compensate the overhead of parallelization.

– Worksharing constructs - specify several ways in which OpenMP can
separate the work among threads. loop and workshare are intended
for data parallelism, while section and task are intended for task
parallelism.

∗ loop - Called for for C and C++, and do for Fortran, provides
a simple way to specify a loop whose iterations will be divided
among the threads. Each thread is given a subset of the itera-
tions, receiving the appropriate value for its loop counter (exam-
ple pp_omp_ex4).

∗ section - Each section is a region of code that will be executed
by a thread. Often used for task parallelism, to specify each task
to be run by a different thread (example pp_omp_ex5).

∗ workshare - Used for vectorization by OpenMP: vector opera-
tions enclosed in a workshare region are executed in parallel by
the threads (example pp_omp_ex6). Only available for Fortran, as
it uses vectorial semantics.

∗ single - Specifies lines in a parallel region that should be exe-
cuted by only one of the threads.

∗ task - An alternative to section for task parallelism, with the
possibility of dynamic task creation.

– Synchronization constructs - change how threads execute depending
on the state of the other threads. Used to avoid synchronization prob-
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lems, such as reading values from a variable before all threads have
finished updating its value.

∗ barrier - When threads encounter a barrier, they must wait until
all other threads have encountered that barrier before they can
proceed. Used to ensure that a shared variable being written on
by several threads has been completely updated when its values
are needed.

∗ ordered - Specifies that a region of code must be executed by the
threads in the same order as the loop iterations.

∗ master - Specifies lines of code to be executed only by the master
thread, without the implicit barrier of single.

∗ critical - Specifies a region of code to be executed by only one
thread at a time. Often used for the lines of code that must access
the same shared resource, such as input and output streams.

∗ atomic, reduction - Specialized alternatives to critical.
∗ locks - Lock variables control access to shared resources: only

one thread at a time can hold a lock.

• Clauses - modify the behavior of constructs.

– shared - Specifies that the same variable is common to all threads.
Any changes to the variable done by a thread will be seen by any
threads that subsequently read it.

– private - Specifies that a copy of the variable will be created for each
thread. Any changes to that variable by a thread will have no effect on
the other threads. Block variables (C and C++) are always private.

– lastprivate, firstprivate - Similar to private, but transporting
the value of the variable when entering or exiting the parallel region.

– default - Specifies which access clause is to be taken as default. It
is usually recommended to set the default to none, so that the access
will have to be explicitly specified for every variable.

– copyin, copyprivate - Initialize or copy the value of a private vari-
able from the master or single thread to the others.

– num_threads - Requests that the parallel region be executed with a
(compile-time) constant number of threads, instead of the usual run-
time determination of thread numbers by the environment or the li-
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brary functions. Typically used in task parallelism, where the algo-
rithm determines how many threads would be used.

– nowait - Suppresses a construct’s implicit barrier.

– schedule - Changes the algorithm to assign iterations among threads
in a loop construct, for cases when some iterations may take longer
than others, to balance the load among threads.

• Library functions - To communicate, get and set execution environment pa-
rameters, synchronize and share resources. Functions are typically placed
under conditional compilation, so that they are ignored when the program
is not compiled for OpenMP (example pp_omp_ex3).

4. MPI

To fulfill the need for a cross-platform standard for process parallelism, MPI
(Message Passing Interface) was created, with the 1.0 version released in 1994,
and is currently at version 2.2 (2009), with 3.0 under discussion. MPI is most of-
ten implemented for C, C++ and Fortran, though it has been implemented in other
platforms (Java, Python, IDL). MPI consists solely of a library of functions. All
parallelization in the code is explicit, achieved through calls to MPI’s functions,
which communicate (pass messages, as the name implies) with the MPI environ-
ment. The MPI environment is set up by the MPI process managers (mpirun,
mpiexec), which starts the program, and handles creation and destruction of pro-
cesses. As such, MPI is a relatively simple standard, at the price of added com-
plexity when writing the code, since the interaction between processes must be
written explicitly by the programmer. Though through conditional compilation
it is possible to write an MPI program that also runs serially without MPI, this
would usually be a cumbersome task.

Typically, an MPI program starts by the function calls to do the MPI initial-
ization, and ends with the MPI clean-up. In between, the code usually will be
common to all processes (SPMD - Single Process, Multiple Data), so that each
process must make use of the MPI functions to decide what part of the job it
must do. There is no shared memory among the processes, so all communication
normally happens sending and receiving MPI messages. This paradigm can be
applied to both data and task parallelism.
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The processes send and receive data through the domains of the communi-
cators, which can be used to separate processes in a hierarchy, and each process
in a domain is identified by its rank in that communicator. The processes may
be executed in the same processor core, by multiple cores in the same computer,
or multiple computers over a network, but MPI always presents the same API,
regardless of how the communication is implemented. MPI offers a variety of
communication options:

• Blocking operations: When a process encounters a blocking operation, it
must wait until it is finished before it can proceed. With non-blocking oper-
ations, the process may continue before the operation is finished.

• Synchronous operations: When a process sends data through a synchronous
operation, it must wait until the target process(es) start receiving the data
(that is, analogous to a phone call). With asynchronous communications,
the process is free to proceed with other tasks while the data is being deliv-
ered (that is, analogous to sending an e-mail).

Some of the main MPI functions in the standard APIs (C, C++ and Fortran)
are listed below. More details are given by [15, 14, 3, 9] and at http://www.
mpi-forum.org.

• Execution control and environment information

– MPI_Init, MPI_Finalize - Used by only one process to set up the
MPI environment and to clean it up at the end.

– MPI_Abort - Used by any process at any time, to request a termination
of all processes. Typically used to handle exceptions.

– MPI_Barrier - When a process encounters a barrier, it waits until all
other processes reach the barrier before proceeding. Used to enforce
synchronization between the processes, typically when processes will
need some result being generated by other processes.

– MPI_Test, MPI_Wait - Verifies if / waits until a data transfer has been
completed.

– MPI_comm_size, MPI_Comm_rank, MPI_Get_processor_name - Ob-
tain the number of processes, the process rank and the name of the
processor running a process.
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• Data transfer

– MPI_Send, MPI_Recv, MPI_Sendrecv - Send or/and receive a message
(data), to a specific process, in a blocking operation.

– MPI_Isend, MPI_Irecv - Send or receive a message to another pro-
cess, in a non-blocking operation.

– MPI_Bcast - Send the same message to all processes.

– MPI_Reduce - Combines a data element from each process into a sin-
gle value, through a series of binary operations (such as addition, or
picking the maximum value), providing the result to all processes.

– MPI_Gather, Scatter - Retrieve / send a data element from / to each
process into / from a set of values, providing the result to all processes.

These functions are considerably simplified in the object-oriented API offered
by the Boost.MPI library. In particular, this library can use the Boost serialization
library and the C++ standard containers to make transfer of arrays and structures
considerably simpler than with the standard API. This difference, as well as the
general structure of a simple program and uses of some of the functions above,
can be seen in the example files (pp_mp_ex1, pp_mpi_ex2).

5. Comparison and discussion

There is no single approach that will be the best for all problems, and most
problems are best served by hybrid solutions, making use of different forms of
parallelization for different parts of the work. Therefore, knowing the characteris-
tics of the different options is paramount to making the best choices [15, 14, 3, 9].
Comparatively, these three paradigms can be resumed as:

1. Vectorization

• Implicit: the compiler / interpreter does the parallelization,

• Parallel code is indistinguishable from serial code.

• Limited to shared memory, in the simplest cases of data parallelism.

• Languages vary widely in capabilities, semantics and syntax.

2. OpenMP
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• Language-, compiler- and platform-independent well-stablished stan-
dard for data and task parallelism.

• Easy to keep compatibility with serial code.

• Limited to shared memory.

• Usually only implemented for C, C++ and Fortran.

3. MPI

• Most widely used standard for distributed memory HPC.

• Multiple processes in a single computer or in several across a network.

• Usually requires to structure the whole program for MPI.

• Without the (non-standard) Boost.MPI library, cumbersome to transfer
data more complex than arrays of primitive data types.

• Still has some variation between implementations.

Parallelization is not always done directly when developing the application:
it may be the result of simply using ready libraries that were made to use par-
allelization. This is often the case with tasks that are common to many scientific
and computing areas, such as linear algebra, Fourier transforms, image processing
operations, common algorithms (sorting, containers, etc.), and common scientific
problems (CFD, MHD, N-bodies, nearest neighbours, etc.).
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