Definition and application of perceptually uniform colormaps

Paulo Penteado IAG/USP

http://www.ppenteado.net/ast/pfp_sab2011.pdf pp.penteado@gmail.com

Outline

The problem

Why perceptually uniform maps need to be developed

Human color vision

- Human color space
- CIE Lab color space

Limitations of standard colormaps

- Why rainbows are bad
- Limitations of other common maps

Development of uniform colormaps

• Standard color maps in different color spaces

Defintion of maps from CIE Lab space

- Fully uniform maps
- Smooth maps

Examples

Dynamic maps

• High Dynamic Range (HDR) rendering

Summary

The problem

B-W linear

Displaying a 2D array as 1-channel image is one of the most common visualization tasks.

Requires choosing a colormap, that goes from the 1D range of data values, to some trajectory in the 3D display colorspace (the RGB cube, with 256³ uniformly distributed points).

Rainbow

(Cassini VIMS data retrieved from PDS through pp_titanbrowse)

Blue/white

Problems with standard colormaps

Their definition did not consider how colors are perceived by humans

• Create artifacts, suppressing some data structures, and creating false ones

They are usually limited to 256 values

- Remnant from the days of 8-bit colormapped displays.
- Low dynamic range saturates the ends of the range, or suppresses small variations.

Limitations of standard colormaps

Rainbow colormaps are as evil as goto:

"Rainbow Color Map (Still) Considered Harmful" - Borland and Taylor, 2007 IEEE Computer Graphics and Applications, vol. 27, no. 2:

The goal is to make the rainbow color map as rare in visualization as the goto statement is in programming (...)

"Go To Statement Considered Harmful" - Dijkstra, 1968 Communications of the ACM, vol. 11, no. 3

Still very commonly used:

Table 1. Statistics from the 2001 through 2005 IEEE Visualization Conference proceedings papers implementing pseudocoloring to display data and that use the rainbow color map.

Year	Relevant Papers Including Medical Images (%)	Relevant Papers Excluding Medical Images (%)	Number of Pages
2001	47	62	8
2002	40	45	18
2003	52	71	32
2004	59	68	62
2005	52	59	61
Total	51	61	181

Limitations of standard colormaps

Same 5 images, in a 3D surface, and 2 colormaps.

Rainbow creates false steps

Rainbow hides the high frequency structure.

From

Rogowitz and Treinish,

Why Should Engineers and Scientists Be Worried About Color?

http://www.research.ibm.com/people/l/lloydt/color/color.HTM

Human color vision - Human color space

The brain does **not** get a 3-filter image from the eyes.

Munsell (~1900): first perceptually uniform color catalog

• Discrete color chips mapped into regular distances in its 3 independent dimensions:

perceived hue, value and chroma

• Showed that the human gamut is irregular

- Continuous mapping functions based on psychophysical measurements
- Cartesian distances in Lab/Luv correspond to percpetual distances

Development of uniform colormaps - Distances from the map origin

Definition of maps from CIE Lab space - Fully uniform acyclic maps

Definition of maps from CIE Lab space - Fully uniform cyclic maps

Definition of maps from CIE Lab space - Smooth acyclic maps

Definition of maps from CIE Lab space - Smooth cyclic maps

Examples

B-W Linear

Examples

Blue-yellow uniform

(Cassini VIMS data retrieved from PDS through pp_titanbrowse)

Dynamic maps

Image Color Appearance Models (iCAMs) predict the perceived image appearance. Example: High Dynamic Range (HDR) rendering

Mark Fairchild, The HDR Photographic Survey http://www.cis.rit.edu/fairchild/HDR.html

Example: RXC J1504.1-0248 (Gemini) at G,R,I filters

Linear stretch (saturated) HDR

(data provided by A.C. Soja)

Summary

Standard colormaps found in common software tend to be too simple.

Rainbow maps are particularly inadequate.

CIE Lab space provides a framework to measure color differences and define maps.

This work defines maps in CIE Lab for:

- Low or high spatial frequencies.
- Cyclic or acyclic variables.
- Standard (8-bit) or wider dynamic range.
- Completely uniform, or (wider) smooth color variations.

Map definitions are still being experimented with:

- other trajectories need to be tested (simultaneous hue/lightness variation)
- more work on their optimization (through CAMs) is needed.

http://www.ppenteado.net/ast/pfp_sab2011.pdf pp.penteado@gmail.com

Work supported by Fapesp (postdoc grant)

sRGB gamut in CIE Lab

